

AC/DC преобразователи

Серия МАА-СБ(СВ) **MAA100-СБ(СВ), 100 Вт MAA150-СБ(СВ), 150 Вт MAA180-СБ(СВ), 180 Вт**

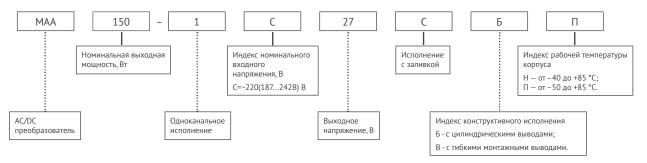
Ключевые характеристики

Мощность	до 180 Вт
Выходной ток	до 20 А
Входное напряжение	~220 (187242) B
Выходное напряжение	=5 B; =12 B; =15 B; =24 B; =27 B
Типовой КПД	94 % (для исп. =27 В)
Рабочая температура корпуса	. –40+85 °C; –50+85 °C
Габариты	136,5×97,5×31,5 мм
Гарантия	до 20 лет

Преимущества

- Чизкий уровень пульсаций: < 80 мВ (при Uвых=27 В)</p>
- Чизкий уровень кондуктивных помех − ГОСТ В 25803-91, кривая 2
- Возможность работы модуля без радиатора при высоких температурах

Даташит доступен по электронному адресу: https://kwsystems.ru/catalog/acdc/models/19


Отдел продаж +7 473 211-06-36

Техническая поддержка

Розниченко Илья Александрович +7 473 211-06-36 #2015, iroznichenko@kwsystems.ru

Информация для заказа

Входные характеристики*

Параметр		Значение		
Диапазон входных напряжений, В Сеть С		~ 187242		
		~ 176264 в течение 1 сек		
Диапазон частот питающей сети, Гц Сеть С		50, 400 Гц		
Потребляемый ток после включения, А		<1,1		
Интеграл Джоуля для импульсного тока I²t		70		
Входной предохранитель		Slow blow 6 A		

Выходные характеристики*

Параметр	Значение					
Номинальное выходное напряжение, В			12	15	24	27
Регулировка выходного напряжения		10 %				
КПД, %**		87,5	92	92,5	93,5	94
Номинальный выходной ток, А	100 Вт	?	8,33	6,66	4,16	3,7
	150 Вт	20	12,5	10	6,25	5,56
	180 Вт	-	-	12	7,5	6,67
Размах пульсаций (пик-пик), мВ		< 50	< 80	< 80	< 80	< 80
Нестабильность выходного напряжения при плавном изменении входного напряжения и выходного тока, %		не более 1 не более 0,5				
Время готовности, сек		<0,5				
Максимальная ёмкость нагрузки, мкФ		30000	15000 4		4000	

^{*} Все характеристики приведены для НКУ, Ивх.ном., Івых.ном., если не указано иначе.

^{**}Значения КПД указаны для исполнения 150 Вт. Измерения КПД проводят при Ивх.ном., Івых.ном. и Ткорп.макс. после установления теплового равновесия преобразователя.

Защиты

Вид защиты						
Защита от короткого замыкания	авт. восстановление					
Защита от перегрузки по току	Рмакс<1,8 Рном (1,2 Рном тип.)					
Защита от превышения выходного напряжения	<1,25 Uвых ном					
Защита от перегрева	срабатывание при температуре корпуса > 100 ± 3 °C					
Дистационное выключение	подача 3,54,5В на выводы «+Упр», «-Упр»					

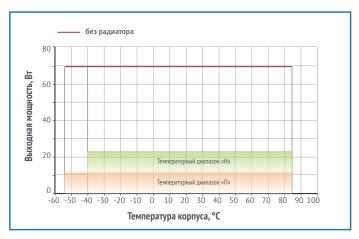
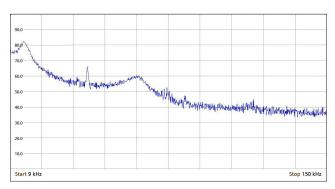
Основные характеристики

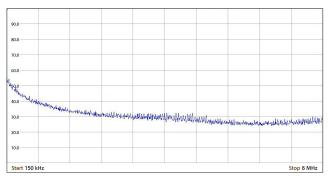
Номинальное выходное напряжение, В Тип подключения			5 12 15 24 27 48 цилиндрические и гибкие монтажные выводы						
									Степень защиты
Температура корпуса, рабочая*	«H»	-40+85 °C							
	«П»	−50+85 °C							
Температура окружающей среды, хранения		-60+70 °C							
Повышенная влажность		95 % при t° с	реды +25 °C						
Электрическая прочность изоляции вх./корп.									
вх./ДУ		~1500 B							
	вх./вых.	~1500 B							
	ДУ/корп.	~1500 B							
	вых./корп.	~500 B							
Сопротивление изоляции 500 В пост. тока		≥ 20 MOM B HKY							
Охлаждение		конвекционное							
Соответствие стандартам ЭМС на входных разъёмах		ГОСТ В 25803, кривая 2							
Гамма-процентная наработка на отказ при γ=97,5 %; Токр.=+60 °C		20 000 ч	50 000 ч	50 000 ч	60 000 ч	60 000 ч	70 000 ч		
Материал корпуса Габариты, мм (Д×Ш×В) Масса, кг			металл						
			136,5×97,5×31,5 мм						
Гарантия		до 20 лет							

^{*} См. графики снижения мощности.

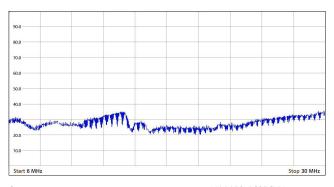
Снижение мощности

Зависимость от температуры

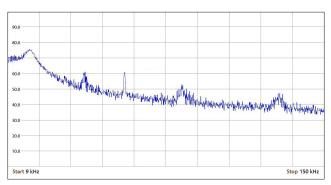




График снижения мощности в зависимости от температуры корпуса при номинальном входном напряжении ~220 В для модулей MAA150-1CXXCXX

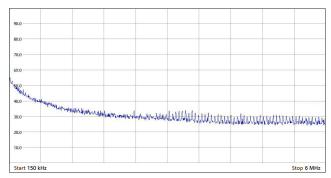
Спектрограммы ЭМС


MAA150-1C05CXX

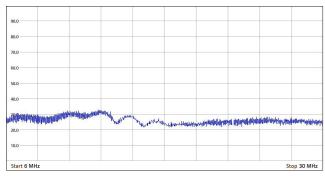
Спектрограмма кондуктивных помех для модуля MAA150-1C05CXX в диапазоне частот 9 кГц-150 кГц с полосой пропускания 300 Гц в режиме измерения MAX. PEAK.



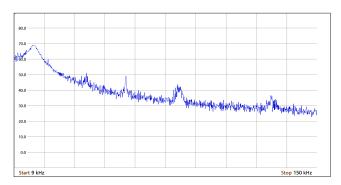
Спектрограмма кондуктивных помех для модуля MAA150-1C05CXX в диапазоне частот 150 кГц-6 МГц с полосой пропускания 10 кГц в режиме измерения MAX. PEAK.



Спектрограмма кондуктивных помех для модуля MAA150-1C05CXX в диапазоне частот 6 М Γ ц-30 М Γ ц с полосой пропускания 10 к Γ ц в режиме измерения MAX. PEAK.

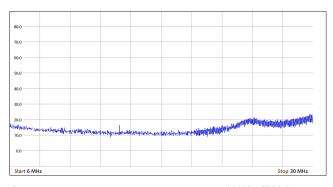

MAA150-1C12CXX

Спектрограмма кондуктивных помех для модуля MAA150-1C12CXX в диапазоне частот 9 кГц-150 кГц с полосой пропускания 300 Гц в режиме измерения MAX. PEAK


Спектрограмма кондуктивных помех для модуля MAA150-1C12CXX в диапазоне частот 150 кГц-6 МГц с полосой пропускания 10 кГц в режиме измерения MAX. PEAK.


Спектрограмма кондуктивных помех для модуля MAA150-1C12CXX в диапазоне частот 6 МГц-30 МГц с полосой пропускания 10 кГц в режиме измерения MAX. PEAK.

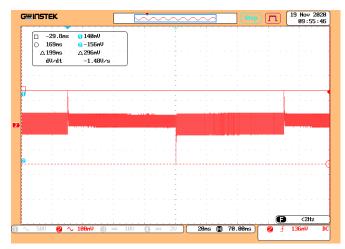
Спектрограммы ЭМС


MAA150-1C27CXX

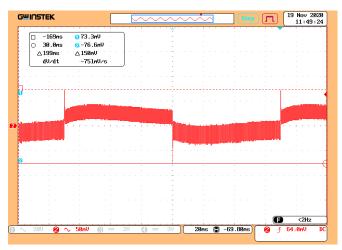
Спектрограмма кондуктивных помех для модулей MAA150-1C27CXX в диапазоне частот 9 кГц-150 кГц с полосой пропускания 300 Гц в режиме измерения MAX. PEAK.



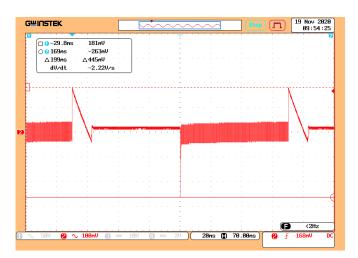
Спектрограмма кондуктивных помех для модулей MAA150-1C27CXX в диапазоне частот 150 кГц-6 МГц с полосой пропускания 10 кГц в режиме измерения MAX. PEAK.

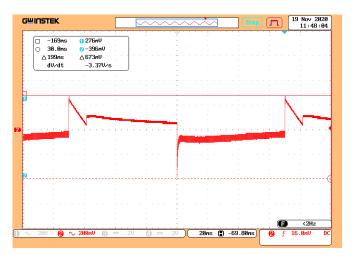


Спектрограмма кондуктивных помех для модулей MAA150-1C27CXX в диапазоне частот 6 МГц-30 МГц с полосой пропускания 10 кГц в режиме измерения MAX. PEAK.

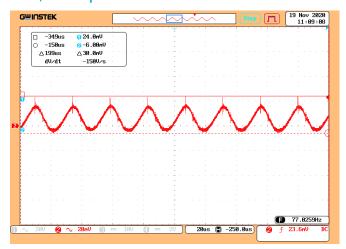

Осциллограммы

Осциллограмма переходных отклонений выходного напряжения для модулей MAA150-1C05CXX при сбросе-набросе нагрузки 50-75-50 %. Время нарастания фронта сигнала 30 мкс.

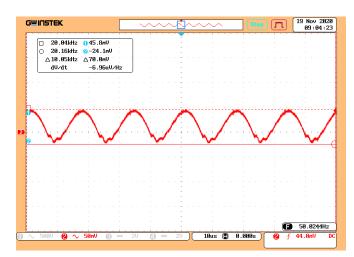

Осциллограмма переходных отклонений выходного напряжения для модулей MAA150-1C12CXX и MAA150-1C15CXX при сбросе-набросе нагрузки 50-75-50 %. Время нарастания фронта сигнала 30 мкс.


Осциллограмма переходных отклонений выходного напряжения для модулей MAA150-1C24CXX и MAA150-1C27CXX при сбросе-набросе нагрузки 50-75-50 %. Время нарастания фронта сигнала 30 мкс.

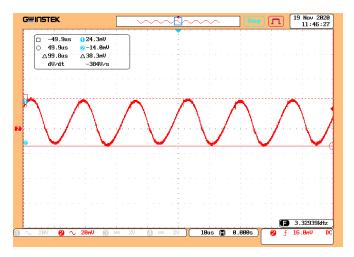
Осциллограмма переходных отклонений выходного напряжения для модулей MAA150-1C05CXX при сбросе-набросе нагрузки 0-100-0 %. Время нарастания фронта сигнала 30 мкс.



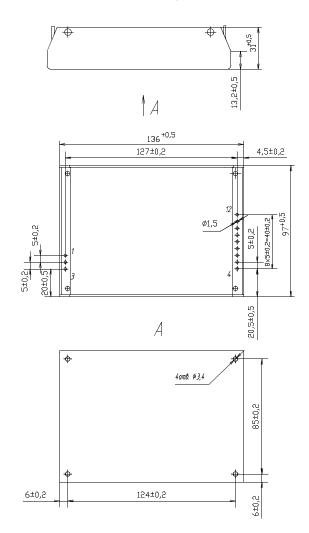
Осциллограмма переходных отклонений выходного напряжения для модулей MAA150-1C12CXX и MAA150-1C15CXX при сбросе-набросе нагрузки 0-100-0 %. Время нарастания фронта сигнала 30 мкс.



Осциллограмма переходных отклонений выходного напряжения для модулей MAA150-1C24CXX и MAA150-1C27CXX при сбросе-набросе нагрузки 0-100-0 %. Время нарастания фронта сигнала 30 мкс.


Осциллограммы

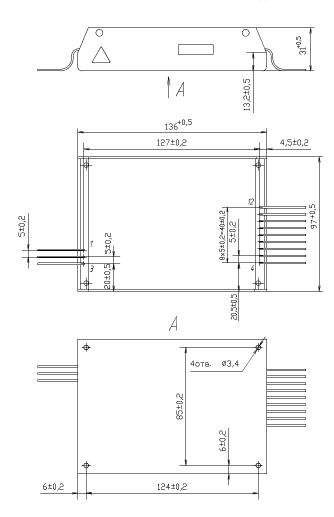
Осциллограмма пульсаций выходного напряжения для модуля MAA150-1C05CXX при нагрузке 100 %.


Осциллограмма пульсаций выходного напряжения для модулей MAA150-1C12CXX и MAA150-1C15CXX при нагрузке 100 %.

Осциллограмма пульсаций выходного напряжения для модулей MAA150-1C24CXX и MAA150-1C27CXX при нагрузке 100 %.

Габаритные чертежи

Одноканальное исполнение с цилиндрическими выводами


Назначение выводов

№ ВЫВОДА	1	2	3	4	5	6
ОДНОКАНАЛЬНЫЙ	КОРП	~BX (L)	~BX (N)	-УПР/РЕГ	+ УПР	+ВЫХ1

№ ВЫВОДА	7	8	9	10	11	12
ОДНОКАНАЛЬНЫЙ	+BЫX1	-ВЫХ1	-ВЫХ1	+ВЫХ1	-ВЫХ1	-ВЫХ1

Габаритная схема

Одноканальное исполнение с гибкими монтажными выводами

Назначение выводов

№ ВЫВОДА	1	2	3	4	5	6
ОДНОКАНАЛЬНЫЙ	КОРП	~BX (L)	~BX (N)	-УПР/РЕГ	+ УПР	+BЫX1

№ ВЫВОДА	7	8	9	10	11	12
ОДНОКАНАЛЬНЫЙ	+ВЫХ1	-ВЫХ1	-ВЫХ1	+ВЫХ1	-ВЫХ1	-ВЫХ1

www.kwsystems.ru info@kwsystems.ru

Компания «КВ Системы» — новое подразделение НПО «Энергетическая электроника». Направление деятельности — проектирование и производство промышленной силовой электроники.

394026, Россия, Воронеж, ул. Дружинников, 56 Координаты в системе GPS: 51.684750, 39.175017 Тел.: +7 (473) 211-06-36